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In maximally diluted disperse systems, each particle (solid, liquid 
or gaseous) may be regarded as being located in the unperturbed hydro- 
dynamic field of the dispersion medium. In this approximation the 
force of viscous interphase interaction is additive with respect to the 
particles and in the simplest case represents the Stokes force multiplied 
by the number of particles in a particular volume of mixture. An 
enormous number of experimental and theoretical studies has been 
devoted to the interaction of particles moving relative to a fluid phase 
( e .g . ,  under the influence of gravity). Most of these consider only a 
finite number of adjacent particles falling in a fluid and the hydrody- 
namic body forces developed in this system, in this case it turns out 
that the effect of these forces is to produce an increase in the rate of 
fall of each individual particle as compared with the Stokes velocity. 
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At the same time, in extensive disperse systems precisely the opposite 
effect is observed, which cannot be explained solely in terms of the 
body forces between pairs of particles. For example, to maintain solid 
particles in a fluidized state it is necessary for the fluid phase to move 
relative to these particles with an average velocity which is often an 
order of magnitude smaller than the Stokes velocity. Below, a simple 
expression, which is found to be in satisfactory agreement with the 
experimental facts, is proposed for relating the phase slip velocity and 
the viscous force acting on a single particle of the disperse system. 

We shall consider a suspension of spherical formations of radius a 
in a flnid medium, located, for example, in a gravity field. For a 
high volume concentration of the spheres we may assume that the in- 
flu..nce of each of them on the flow of the fluid phase extends only a 
finite distance, depending on the concentration, from the sphere. In 
other words, in a concentrated disperse system there is a certain ef- 
fective screening of the long-range hydrodynamic interaction, and the 
flow perturbation due to the particles is essentially confined to a certain 
limited volume adjacent to each particle. Such models have previously 
been used in evaluating the viscosity of suspensions in the theory of 
aerosols, etc. (see, for example, [1-3]) .  The exact determination of 
the mean of these voiumes, its size and shape, is impossible in the 
absence of details on the microstructure of the system and the forces 
of intetparticle interaction, However, in the first approximation this 
volume can be described with the help of a "cellular model" of the 
system similar to the corresponding model in the kinetic theory of 
dense gaseS. Thus, we may assume that on the average each particle 
corresponds to a spherical celt concentric with the particle and having 
a radius a' > a, while perturbations of the flow outside this cell do not 
affect the flow of fluid inside it, and conversely. Mathematically, 
this is expressed by specifying at the surface of such a %phere of in- 
fluence" the boundary condition that the ~adiat mmponent of tke per- 
turbation velocity, introduced by the particle in question inside the 

sphere, vanishes. 

We shall estimate the quantity a'. The specific volume of an in- 
dividual particle r=  1/n = O/p, where 6 is the volume of the particle, 
and n and p ate the number and volume concentrations of the part icles.  

Obviously, 

a' = hap - % .  (1) 

Here k is a parameter close to unity; generally speaking, k may be 
weakly dependent on p. 

We solve the problem of the constricted flow around a particle by 
the method used in [4]. Outside the particle the lineatized Stokes 

equations have the form 

~Av--Vp= 0, Vv=0, 

whence it follows that 

A [Vxvl  = 0. (2) 

Analogous equations apply inside the sphere of radius a. For def- 

initeness, we shall henceforth denote all quantities relating to the 
internal flow with a prime. 

The divergence of the vector v is identically equal to zero; there- 
fore v may be expressed in the form of the curl of a certain axial 
vector w, which must be linearly dependent on the average interphase 
slip velocity vector u. Such a vector can be uniquely constructed, 
i. e . ,  we obtain 

v =  V x l v x  ( /n)] .  (3) 

Here f is some scalar function of the distance from the center of the 

particle r. From (2) and (8) we have 

A I v •  = A (VV--  A) [VX/u] = -- A2 [VX/~I ---- O. 

Since the vector u is constant and arbitrary, we thus obtain 

A'(V/) =0, A~I~ const. 

The general solution of this equation, which depends only on,r, can 

be represented in the form 

l = a ~ + l b  a + ~ r + S r  "1 . 

Evaluating. we obtain for the pressures and the velocity compo- 
nents inside and outside the sphere in a spherical coordinate system 

introduced in the usual way 

B 
+ u )  cos O, = (or z + d) cos V r =  ( A  + - 7 -  + CrZ Vr" O, 

"o = ( 2r'A 2rn - - 2 C r ' - - u ) s i n O ,  v~' = (--  2e , ' - -  d)sin O, 

p = ~ (B/r s + t0Cr) cos O, p' = ~t' (t0cr + e) cos O. (4) 

Here A, B, C, c, d, e are constants. The boundary conditions have 

the form 

V r ~ V r  ~ ~ 0, V s = v S %  

r ~ a ,  V r  ~ u C O S  0 ,  r = a t , 

Ovr . Ovr" 
- -  p q- 2p. ~ ; - - =  - -  p q-2~t' 0"-7--' r = a , 

I* \ 7 - ~ - ~ -  + Or 7 = W  -g6 - +  Or F " (5) 

After evaluation of the constants from conditions (S) and their 
substitution in (4), we get for the components of the viscous stress 
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tensor outside the sphere: 

3~u [I 2 %r--aP(~) ~--~ - - i 0 ~ 3 - : - ( 4 - 2 ) ~ s ]  c~ 

3•u 
~ r 0 = - - ~ ( t ~ - 5 5  s - ~ s )  s ino,  

p ( ~ 7 = 2  (i t 
T )  , 

a [K 

~ = ~ ' '  ~ - -  75-" 

Evaluation of the force F acting on a single particle gives 

F=4~l~au~(14-G(~, • ~--~ 3p,'+2p~ 
2(~'-~ ~) ' 

~s 2 2 (1_~)]5~ } (67 G(L •  

Let us consider the limiting cases. When ~--* ~, k--~ 8/2 (solid 
particles) 

~ (3 -- ~) (77 F =6u~tau (1 + S/aM (~)), M (~) = 2 - -  5~ a @ 3~ s " 

As ~ "-" 0, )% --> 1 (gas bubbles in a viscous liquid) we have 

F =  4 ~ a u ( l  + 2 N ( ~ ) ) ,  N ( ~ )  = ~ a ( i - - ~ 5 ) - *  . (8) 

It is easy to see that as ~ --> 0 from (6) we get the familiar Rybch- 
inskii-Hadamard formula, and from (7) or (8) its particular cases. 
From (6) it is easy to see that F goes to infinity as g ~ pl/s as it 
should; in reality, of course, the maximum possible values of p are 
equal to those for close packing (cubic, hexagonal), i . e . ,  are less 
than unity. The expressions obtained are valid only if the particles are 
spherical or nearly spherical. This assumption is valid for droplets 
and bubbles if the surface tension at the phase interface is sufficiently 
large, or ff the linear dimensions of the particles are sufficiently small. 

It is of some interest to compare the results of this study with the 
experimental data. It is known [5] that in the region of small Reynolds 
numbers the viscous drag of a fluidized bed is satisfactorily described 
by a relation of the type (7), wkh 1 +(5M/8) replaced by the quantity 

= (1 - p)-3.75. The resuks of a numerical calculation of the func- 

tions (p = I + 5M/3 and g, computed from (1) for k ~ 1.1, and ~ are 
presented in the figure (curves 1 and 2, respectively). It is clear that 
the correspondence is very good. The same figure shows the function 
1 + 2N (curve 87. A comparison of curves 1 and 8 yields the interesting 
conclusion that the difference between the forces of viscous inter- 
action of solid and gaseous dispersed phases with the liquid phase in 
concentrated disperse systems is considerably greater than the dif- 
ference in the Stokes forces acting on an isolated bubble or solid par- 
ticle of the same size. 
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